
Solar (PV – photo voltaic) Panels

Insulating your house is best first step

1

Options – Heating your hot water for washing etc

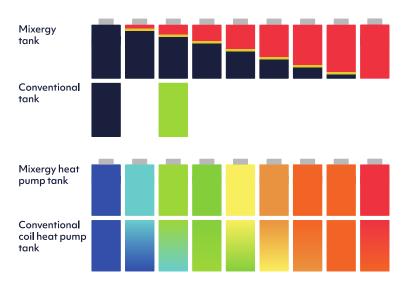
Traditional Cylinder

- Heats all the water to set temperature
- Can use solar to heat as well as grid electric or gas

Mixergy Cylinder

- Heats from top, heats only what you need
- Measures daily usage at heats water used at that time of day
- Can use solar

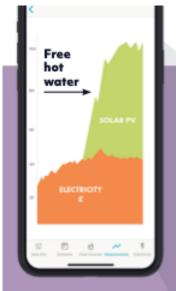
Heat Battery


- Like a big shower or
- Sunamp (see appendix) which uses different technology to provide instant hot water
- Can use solar

Examples overleaf

Mixergy Hot Water tanks – heat what you use

How it works (electric and gas)


Mixergy electric and gas powered tanks use novel top-up technology to 'float' hot water on top of cold. This means you can selectively 'heat what you need', rather than the whole tank. A sensor within the tank ensures you'll always know how much hot water is available. Top-up reduces heat losses and improves reheat speed from cold (5x for electric, 2x for gas). This helps save money, time and energy.

How it works (heat pumps)

Mixergy heat pump tanks heat using an external heat exchanger and circulating pump to heat the full contents of the tank from the bottom up evenly via convection. This has the benefit of improving the efficiency of the heat pump (while heating hot water) by up to 8% and can increase the amount of hot water stored by the tank by up to 20% in some cases.

Heating with renewables

If you have an additional heat source such as solar thermal or PV, you can heat water for free when the sun shines.

By heating a smaller portion of the tank, you are leaving more water available to be heated by renewable energy. This allows you to use more of the energy you produce, and export less!

Alternative ways to heat water

Thermal stores

Thermal stores are highly insulated water tanks that can store heat as hot water for several hours. They usually serve two or more functions:

- Provide hot water, just like a hot water cylinder.
- Store heat from a solar thermal system or woodfuelled boiler, for use later in the day.
- Provide a 'buffer' function for heat pumps.
- Store heat from multiple sources, for example a heat pump, solar thermal system, and wood-fuelled stove with a back boiler.
- House an immersion heater, which could be powered by solar PV panels, a wind turbine or a hydroelectric turbine using a 'diverter switch'. The immersion heater heats the water in the thermal store.

Thermal stores can vary in size from 250 litres up to 500 litres or more.

You can read more about thermal stores and how they can be <u>integrated with different renewable energy systems</u>.

Heat batteries eg Sunamp

Heat batteries store either spare heat or electricity, often generated by renewable energy systems. Heat can be stored in a material when it changes phase from a solid to a liquid. These materials are called phase change materials' (PCM). Spare heat or electricity is used to charge the PCM inside the heat battery. When the heat is needed, the phase change material changes back into a solid with a release of heat, which is used to provide hot water.

What are the benefits of heat batteries?

Heat batteries are generally smaller and lighter than filled thermal stores. This means you might be able to install one in a convenient location even if you can't find space for a traditional hot water cylinder. Heat storage batteries do not degrade in the same way as electrical batteries and should have a far longer lifespan.

Options – Instant Hot Water heating to replace gas combi or traditional system

THERMINO

Thermino ePV – Replaces a direct cylinder to deliver hot water efficiently from solar PV. With grid electricity for greater flexibility when needed.

Old technology

Space-saving – up to 4 times smaller than the hot water cylinder it replaces

Hot water for free - stores surplus energy from solar PV that would be otherwise lost back to the grid

Lower heat losses - up to 4 times higher energy efficiency

Low heat losses – from only 0.48 kWh a day


High flow rate hot water

Instantaneously heated for hygiene and freshness

Fast and easy to install – no tundish, no high temp discharge pipework and T&P safety valve to maintain

No mandatory annual maintenance

Market-leading 10-year warranty on the heating element

World leading thermal storage technologies

www.sunamp.com Edinburgh | Zurich | New York

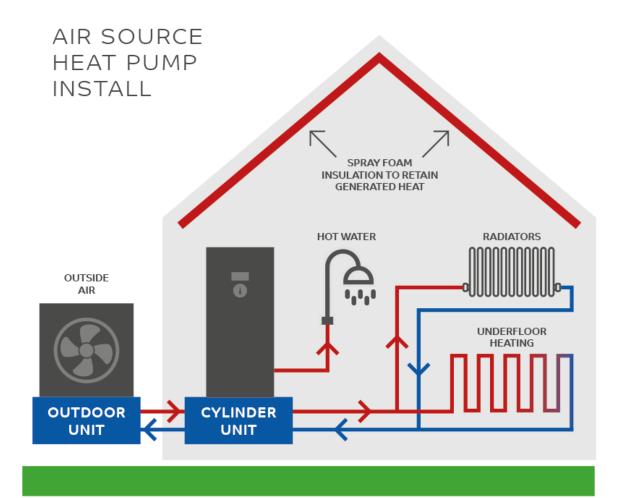
Thermino ePV technical data and dimensions

	70 ePV	150 ePV	210 ePV	300 ePV	
Manufacturer's part number	SGP-BAW-ATZ-1	SKP-BAW-ATZ-1	SNP-BAW-ATZ-1	DRP-BAW-ATY-1	
Equivalent hot water cylinder size (L)	71	140	212	306	
V40 volume of hot water*	105	199	301	436	
Water content	3.2	3.2	5.9	12.8	
Heat loss rate (kWh/24) (W)	0.48 (20)	0.67 (28.1)	0.77 (32.1)	0.84 (35)	
Energy efficiency rating class	С				
Recommended flow rates (LPM)	6	15	20	25	
Minimum mains supply pressure	1.5 bar (0.15 MPa)				
Maximum mains pressure	10 bar (1.0 MPa)				
Hot water temperature	45-55°C				
Connected load at 230v, 50hz (W)	2,800				
Annual electricity consumption (kWh/annum)	542	1,398	2,690	2,701	
Product weight (empty) (kg)	75	136	172	220	

^{*}This data assumes an incoming mains water temperature of 10°C NOTE: in line with UK Building Regulations, Sunamp advise the installation of a suitable hot water supply tempering valve at the outlet of the appliance, to prevent the risk of scalding.

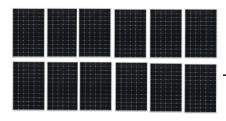
(mm)	70 ePV	150 ePV	210 ePV	300 ePV
Dimension 1	575	575	575	575
Dimension 2	365	365	365	365
Dimension 3	440	640	870	1,050
Dimension 4	37	37	37	37
Dimension 5	78	78	78	78
Dimension 6	50	50	50	50

500ml expansion vessel C5407


Tempering valve C5388

energy diverter C2160

Options – Use Heat Pump to replace boiler (gas / electric or oil)

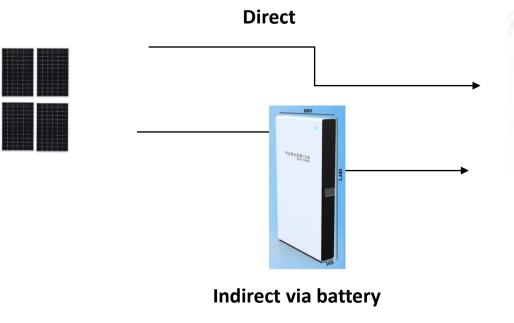

- Outdoor Unit is Heat Pump
- Air sourced or Ground Sourced
- Cylinder unit is pressurised hot water used for washing and heating
- Replaces (unvented traditional hot water cylinder where there is water tank in loft)
- Radiators may need expanding, internal cleaning or replacing to ensure heat flows

- EG 16Kw Air to Heat Pump and Hot Water Tank
- 4-5 bedroomed house

Solar Panel (PV Panel – photo voltaic) to Battery

• 15-20sqm = 3-4 KW

- 10KwHr example
- Fed by solar panels
- Can be fed from low overnight tariff and PV during daylight hours
- Reduces grid consumption
- provides back up if mains power is cut


Opportunity

- Reduced CO2 and energy running costs of oil & gas
- Take advantage of low cost tariffs during the day and night

Solar Panel (PV Panel – photo voltaic) to Vehicle Charging Point

- 15-20sqm = 3-4 KW
- PV panels feed batteries and house.
- Inverter converts from DC to AC.

- Consider EV (Type 2) charging points
- Lockable
- Tethered (cable connected)
 or untethered plug in
 when you need
- Fed by batteries from overnight power and topped up with PV
- For Plug-in (PHEV) and fully electric vehicles

Opportunity

- Reduced CO₂, NOx
- Reduced petrol & diesel costs